Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

V.A. Nepomniaschy, I.S. Anureev,
I.V. Dubranovsky, A.V. Promsky

TOWARDS C# PROGRAM VERIFICATION:
A THREE-LEVEL APPROACH

Preprint
128

Novosibirsk 2005

A new three-level approach to sequential object-oriented program veri-
fication is presented. It is applied to a significant C# subset called C#-
light that includes all principal sequential C# constructs. At the first stage,
C#-light is translated into an intermediate language C+#t-kernel. A Hoare-
like logic is presented [or C#-kernel. At the second stage, lazy verificalion
conditions are generated by means of the Hoare-like logic. The generated
verification conditions are lazy because they can include symbols represent-
ing postponed extractions of invariants of labelled statements as well as
postponed invocations of methods and delegates. At the third stage, lazy
verification conditions are refined using some algorithms of operational se-
mantics. This approach allows us to simplify axiomatic semantics and to
make unambiguous inference of lazy verification conditions. An example of
verification of a C#-light program serves to illustrate this approach.

© A.P. Ershov Institute of Informatics Systems, 2005

Poccniickas akagemusi Hayk
Cubupckoe oTaejeHue
Nucrturyr cucrem uadopMaTuku
nm. A. II. Epiiora

B.A. Henomusimuii, 1.C. Anypees,
n.B. Jy6panosckuii, A.B. IIpomckuii

HA IIVTU K BEPUPUKAIIUUN C#-ITIPOT'PAMM:
TPEXYPOBHEBDBIU IIOJXO0O

ITpenpunr
128

Hosocubupck 2005

Msr nipescTaBisgeM HOBBIH TPEXYPOBHEBBIH MOAXO K BEPU(DPHUKAIMH [10-
CJIEJIOBATENILHBIX 00 bEKTHO-OPHEHTUPOBAHHBIX MporpamMM. OH npuMensier-
¢4 K BbIpazuTebHOMY noaMHoKecTBy C#-light sizpika C#, koTOpO€E BKIIFO-
YaeT BCE ero OCHOBHBIE IOC/EA0BATEbHbIE KOHCTPYKIuU. Ha nepsoM sTa-
e a361Kk C#-light Tparcaupyerca B mpoMexxyrounstii a3bik C#-kernel. Ha
BTOPOM 3Talle IOPOXKIAITCS JIEHUBBIE YCIOBHS KOPPEKTHOCTH MOCPEICTBOM
AKCHOMATHYIECKON ceMaRTnKW, paspabotaruoil ana asbika C#-kernel. Otn
YCJIOBHS ABJASIFOTCA JJEHWRBIMU, TaK KaK OHH MOT'YT BKJIIOYATDH CIEIUAILHBIE
P YHKIMOHAJIBHBIE CHMBOJIBL, TPEACTABJIAIOININE OTI0KEHHOE YTOYHEHUE MH-
BAPUAHTOB [IOMEYEHHBIX OIEPATOPOB, & TAKKE OTJIOXKEHHBIE BEI3OBBHI METO-
noB u feneraros. Ha TperbeM drame 9TH yCIOBHS YTOYHSIOTCH C HCIIOJIb-
30BaHUEM AJITOPUTMOB OTIEPAIMOHHON CEMAHTUKMU. DTOT MOIX0J TO3BOJISLET
YIPOCTUTH AKCHOMATHIECKY) CEMAHTHUKY, & TAKXKE OJHO3HAYHO BBIBOJIUTH
ycioBus KoppekTtHocTu. [Ipumep Bepudukamyuu C#-light nporpammbr mir-
JIFOCTPUPYET JAHHBINA TOIXO.

(© WnacturyT cucrem uadgopmarukn uM. A. II. Epmosa CO PAH, 2005

1. INTRODUCTION

Verification of programs presented in widely-used object-oriented pro-
gramming languages, such as C++, C#, Java, is a subject of much current
interest. An essential prerequisite for a programming language to be suitable
for verification is compact transparent formal semantics. The most exten-
sively employed approach to formalization of semantics is the operational
one using such notions as transition systems and abstract machines. For
example, formal operational semantics has been developed for C# [3]. How-
ever, the verification process in operational semantics is, as a rule, much
more complicated as compared with axiomatic semantics based on Hoare-
like logics.

Difficulties of developing compact and transparent axiomatic semantics
of object-oriented programming languages are connected with such con-
structs as overloading, dynamic binding of methods, exception handling,
static initialization of classes. Axiomatic semantics has been proposed for
different sequential Java subsets in [5, 6, 15, 16, 18, 19]. However, com-
pact and transparent axiomatic semantics has been developed for separate
diflicult Java constructs, whereas it turned out to be cumbersome and incon-
venient for the practical use in the case of a wide sequential Java subset [15].

We develop a new three-level approach to verification of C# programs
for a wide sequential subset called C#-light. The approach combines opera-
tional and axiomatic semantics. A preliminary version of this approach has
been published in [14].

At the [irst stage, C#£-light is translated into an intermediate language
C#-kernel in order to eliminate some C+#-light constructs difficult for ax-
iomatic semantics such as, for example, the try statement, as well as to
design axiomatic semantics in more compact and transparent form. Based
on the syntax of C#t-light, C#-kernel only permits the if statement, block
statement, goto statement, labeled statement, empty statement and ex-
pression statement. The translation to this restricted set of statements is
achieved by introducing metainstructions into C#-kernel, which are used to
handle metavariables encoding the states of C#-light programs.

At the second stage, lazy verification conditions are generated by means
of forward rules of axiomatic C#-kernel semantics. These verification con-
ditions are lazy because they can include special functional symbols rep-
resenting the postponed extractions of invariants of labeled statements, as
well as the postponed invocations of methods and delegates.

At the third stage, lazy verification conditions are refined using some

5

algorithms of operational semantics.

The main difference with [14] consists in a modification of C#-kernel
axiomatic semantics to reduce the number of generated verification condi-
tions.

The paper consists of 9 sections. The C#t-light language is introduced in
Section 2. The language of program annotations is described in Section 3.
The C#-kernel language is defined in Section 4. A method for translation
from C#-light into C#-kernel is considered in Section 5. Axiomatic seman-
tics of C#£-kernel is described in Section 6. The lazy verification condition
refinement algorithms are outlined in Section 7. An illustrative example
of application of our approach is presented in Section 8. The results and
perspectives of development of our approach are discussed in Section 9.

This research has been partially supported by a gift from Microsoft Re-
search within the ROTOR project in 2002-2003 and is partially supported
by RFBR grant 04-01-00114a.

2. THE C#-LIGHT LANGUAGE

The C#-light language includes a considerable subset of C#. Unsup-
ported constructs are as [ollows:

1. Attributes. At the [irst sight the concept of attributes is quite simple.
It allows programmers to invent new kinds of declarative informa-
tion, attach this information to various program entities, and retrieve
this declarative information at run-time [1]. But their formalization
must take into account the compilation process and various rules of
ambiguities resolution. In most cases user attributes have no signifi-
cant importance and the built-in ones, as a rule, are used in the cases
which are out of the scope of our project, such as interaction of .NET
packages and COM servers.

2. Destructors. The garbage collector underlying C# is invisible to most
developers. Thus, in contrast to C++, we cannot predict precisely
the moment of object deallocation and, consequently, the moment of
destructor invocation.

3. The using statement. Similarly to destructors, this statement has
implicit connection to the garbage collection mechanism.

4. The checked and unchecked operators. These constructs determine
the reaction of a virtual machine to overflow for integral-type arith-
metic operations and conversions. They could complicate the expres-

sion evaluation semantics, especially if we try to model how the high-
order bits are discarded in an unchecked context.

5. Unsafe code. The security is one of the cornerstones of the .NET
platform. Unsafe code can violate the requirements of security. In
addition, such low-level memory manipulations depend on a concrete
realization.

6. Pre-processing directives. In C#, pre-processing directives are proces-
sed as a part of the lexical analysis phase, so they cannot be unfolded
by a separate tool [11]. Fortunately, the expressiveness of C# does
not sufler in a high degree if these directives are discarded.

Thus, the C#-light language is a representative sequential subset of C+£.
In comparison with Java, it includes distinctive features of C# such as
properties, events, delegates and indexers.

C#-light proposes the means to annotate programs. The annotations
are comments of the orm

/// <a> R

where R is a formula of the specification language (see the next sect.)

3. THE SPECIFICATION LANGUAGE

The specification language is used to express the program annotations
(pre- and postconditions, loop and label invariants). Speaking more gener-
ally, it is used to write assertions about program properties. Traditionally,
the first-order language seems to be a good choice for a simple program
language. It can become insuflicient for complex concepts, such as aliasing.
Some researchers were forced to use new logical constructs (the if-term,
for example) or complex substitution definitions [2, 17]. Instead of this,
we prefer to extend the first-order language by higher-order functions and
some elements of A-calculus. This approach is also widespread and used, for
example, in [15, 16].

3.1. Types

The types of the specification language include the base types U, N, T,
functions T'— T and Cartesian products T x 7", where
¢ [/ is a universal set which includes, at least, all C# literals, the set £
of storage locations, the set Aat of natural numbers (including zero)
and undefined value w,
e N is the set of C# identifiers,

7

o 7 is the set of type names.
The class and structure instances are denoted directly by the corresponding
storage locations [1, §8.3]. Let Loc(T') denote storage locations represented
by C# variables of type T'.

3.2. Expressions

Expressions of the specification language are defined by induction as
follows:

e the variables and constants of type T are expressions of type T

o if s1,...,s, are expressions of type T,...,T,, respectively, and s is
an expression of type 71 X ... X T,, — T, then s(s1,...,s,) is an
expression of type T}

e if x is a variable of type T and s is an expression of type T”, then
A(z, 8) is an expression of type T'— T, called A-term. As usual, it de-
fines a function which, being applied to its argument a, produces the
value of the expression s, where every occurrence of x is substituted
by a.

We fix a special function name upd with the following standard interpre-
tation: if s is an expression of type T — T", e; and e are expressions of type
T and T, respectively, then upd(s, ey, es) is an expression of type T — T",
which is equal to s everywhere except, maybe, e; and upd(s, ey, ez)(e1) = es.

Let s(u < t) denote the substitution of the term t for all free occurrences
of the variable u in the expression s.

Logical expressions, called annotations, are built from expressions of
type bool with the help of logical connectives A, V, =, = and quantifiers 3
and V in a usual way.

3.3. Metavariables and states

The interpretation of annotations is based on the notion of states. We
define a state as a mapping of the specification language variables into their
values.

In fact, the classical approach [2] treats states as mappings of program
variables, because these variables are denoted by the same names in the
expression language, which is a first-order language. For example, execution
of the assignment z := y in a state o leads to the modified state upd(c, z, y).
In axiomatic semantics this situation is modeled by well-known Hoare axiom

{P(z < y)}z = y{P}

8

This axiom may become unsound in the case of aliasing. In [17] the compli-
cated redefinition of substitution was proposed to solve this problem.

In our approach, the program variables are denoted by constants of type
N with the same names. The link between such “variables” and values in the
corresponding storage locations is established by the fixed the specification
language variables, called metavariables'. They include:

1. the metavariable L of type N' — L, which maps the program variable
names into the corresponding storage locations;
2. the metavariable V of type £ — U, which produces the values stored
in storage locations;
3. the metavariable T of type N'UU — T, which produces the types of
program variables from A and the types of literals [rom U;
4. the metavariable L2 of type U x (N UNat) — L, which maps the
object fields and array elements into storage locations;
. the metavariable VO of type U, which contains the value of the last
evaluated expression;
6. the metavariable E of type U/, which contains the value of the catched
exception.

(¥

Note. This fixation of the metavariable names leads to an implicit restric-
tion: to avoid ambiguity, the set of program identifiers cannot contain the
names L, V, T, L2, V0, E. For example, if there is an integer program
variable L, then what is the type of the specification language expression
L: N or N'— L? But it is not necessary to state such a restriction in the
delinition of C#-light, because it is suflicient just to rename the identifiers
in a program.

In C#-light, the assignment considered above leads to the modified state

upd(o, V, upd(o(V), o (L)(x), o (V)(y))),
and the corresponding Hoare triple takes the following form:
{P(V < upd(V,L(z),V(y))} z = y; {P}.

The metavariables describe precisely the state of the abstract C+#-light
machine. The main advantage of this approach is that we can use the sim-
plest definitions of state and substitution.

Most of them are mappings of some type. That’s why we use the prefix “meta” to
reveal their higher-order nature and to separate them from program variables.

3.4. Notational conventions

Nevertheless, such a meta-approach makes expressions of the specifica-
tion language considerably cumbersome. As we have seen, the term = turns
into V/(L(z)). Active use of “upd” term cause a combinatorial explosion in
the length of expressions, which makes them totally unreadable. We develop
some strategies of optimization in our verification tool. For a while, in this
paper we shall use the following abbreviations:

Original term | Short lorm
V(L(x)) Vix)
L2(V(z),y) | L2(=,y)
V(L2(z,y)) | V2(z,y)

We will also use the name mus to denote the tuple [L,V,T, L2, V0, E].
The combination of muvs with some index (or dash) means that the compo-

nents of the tuple have the same index (dash). For example, mwvs,; stands
for [Liv‘/;vTivLQiaVOiaEi]‘

4. THE C#-KERNEL LANGUAGE

The C+#-kernel language is an object-oriented language that is based on
the C#t-light’s subset S defined by the following restrictions:

¢ S does not contain namespaces and using-directives;

¢ S does not contain events;

e S does not contain the following statements: the jump statements
break, continue, return, goto case, goto default and throw, the
try statement, the selection statement switch, iteration statements,
declaration statements;

¢ S contains only those if statements that have an else-branch and
have a boolean variable as a conditional expression;

e an invocation of a static function member is located only in those
program places where the static initialization of an appropriate class
or struct has already been performed;

¢ all labels, local variable names and local constant names must be
unique within a program;

e the sets of labels, local variable names, local constant names and
type names are disjoint.

10

The subset S is extended by metainstructions, and restrictions are ap-
plied to the expression statements and the class and struct declarations.

4.1. Metainstructions

Metainstructions are used to handle metavariables. In C#-kernel, there
are [ive metainstructions:

1. x := e assigns the expression e in the annotation language to the
metavariable x.

2. new_instance() allocates a new storage location and puts it to VO.

3. Init (C) performs static initialization of the class/struct Cif the type
C has not yet been initialized.

4. catch(T, x) returns true if E stores a value of the type T, and
false otherwise. Additionally, in the former case the value of the
variable x is set to the exception object located in E, and the value
of the metavariable E is set to w to indicate that the exception has
been caught. This metainstruction can be used only as a conditional
expression within an if statement.

5. catch(x) returns true if E # w, and false otherwise. Additionally,
in the former case the value of the variable x is set to the exception
object located in E, and the value of the metavariable E is set to w.
This metainstruction can be used only as a conditional expression
within an if statement to model the generic catch section of a try
statement.

4.2. The expression statement

The expression statement in C#-kernel is a normalized expression or
metainstruction followed by a semicolon. Normalized expressions are defined
by the following restrictions on C#-light expressions:

¢ a normalized expression has the form x.y(zy, ...,2,) or y(z1, ..., 2,,),
where x is a variable name or a type name, y is a method name, a
delegate name, a constructor name, or an operator, zi, ..., 2, are

variable names (possibly with the ref and out modifiers), literals or
metavariables E and VO0;

¢ in normalized expressions, the logical operators || and &&, condi-
tional operator ?:, operator new and all assignment operators are
not permitted;

11

¢ in normalized expressions, the function members can be invoked only
in their normal form [1].

4.3. The class and struct declarations

Declarations of fields and constants of classes and structs do not contain
initializers. Instead, two methods SFI and IFI called initializing methods
are reserved for each class declaration to perform static and instance field
initialization, respectively. Initialization of constants and static fields takes
place in the method

public static void SFI() { ... }

where each static field and constant is initially set to the default value of
its type with the following optional initialization of fields and mandatory
initialization of constants. Initialization of instance fields of a class C takes
place in the method

public void IFI_C() { ... }

These methods extend the context for direct assignments to a readonly
field [1].

5. TRANSLATION FROM C#-LIGHT INTO C#-KERNEL

Translation from C+#-light into C#-kernel is a sequential application of
transformations. Certain construct translating rules are defined by a set
of transformations which are non-deterministically applied to the program.
Other rules have an imperative form and transformations are used as ele-
mentary actions when defining these rules. Each transformation specifies a
program fragment to be transformed and conditions under which the trans-
formation can be applied.

Let us briefly describe the rules of translation from C#-light into
C+#-kernel. The complete description can be found in [4].

5.1. Expression normalization

The expression-statement normalization is performed by the Norm trans-
formation that is defined with the help of C# expression production rules.
For each type of expression, Norm specifies how to split the expression into
several normalized expression statements.

Invocations of function members in the expanded form are replaced by
invocations of function members in the normal form. To achieve this, in each

12

invocation expression, arguments that correspond to the parameter array
are replaced by an array creation expression that allocates memory for the
array of these arguments. For example, for a functional member of the form
public void F(int p, param int[] a);
the expression F(1, 2, 3, 4); is transformed into the expression
F(1, new int[] 2, 3, 4);

The boolean expression in the if statement is placed to a separate ex-
pression statement. For example, the statement

if x+y){ ...}
is transformed into the fragment
bool z = x + y;

it (@) { ...}

The requirement that an invocation of a static function member is lo-
cated only in those program points where the static initialization of the
appropriate class or struct has already been performed is achieved by in-
serting the appropriate metainstruction Init.

The conditional operator ?7: and the logical operators || and && are
expressed with the help of the if statement. For example, the expression
x 7 el : e2;
is replaced by the fragment
if (x)
{ Norm[(T) ell; }
else
{ Norm[(T) e2]; }
where T is the type of the conditional expression.

The assignment operators, as well as the field and array access, are
expressed with the help of the metainstruction :=. The operator new is
expressed with the help of the metainstructions :=, new_instance and the
IFI method. For example, if c is a variable of a class C, then the fragment

¢ = new C();
is translated as follows:

Init(C);
new_instance();

L := upd(L, x, VO);
T := upd(T, x, C);

13

T := upd(T, L(x), Loc(C));

new_instance();

V := upd(V, L(x), VO);

T := upd(T, V(x), C);

x.IFI_CO; x.CO;

V := upd(V, L(c), V(x));

Note that a helper local variable x is used in this example.

Events are reduced to delegates.

The property, indexer and operator declarations are duplicated in the
method declarations according to the reserved member names [1]. After
that, the property and indexer access, as well as operator invocations, are
transformed into invocations of appropriate methods. For example, for an
event of the form

public int P
{
get { ... %
set { ... }
}

declared in a class C, the methods
public int get_PQ);
and
public void set_P(int value);
are added to C, and the expressions P = 5; and x = P; are translated into
the expressions set_P(5); and x = get_P();, respectively.

The field and array access, as well as field and array element updates,
are expressed with the help of the metainstruction :=. For example, if a
field of the type int is declared in a class C, then

c.a = c;
is transformed into
V := upd(V, L2(c, a), V(c));

The constant and field initializers are moved to the SFI and IFI methods
according to the definition of C#-kernel.

5.2. Statement elimination

The declaration statements are translated into the metainstructions :=
and new_instance. For example, the declaration of a struct

14

S x;
has the following form in C+#-kernel:
new_instance();

L := upd(L, x, VO);
T := upd(T, x, 9);
T := upd(T, L(x), Loc(8));

The jump statements break, continue and return are replaced by the
goto statement. In this case, when we eliminate the statement

return e;
contained by a function member, the metainstruction := and the metavari-
able VO are used to set the return value of the function member. So if x is
a local variable that holds the result of evaluation of e, then

VO := V(x);
sets the return value of the function member.

Iteration statements are transformed into the if and goto statements.

The selection statement switch is expressed with the help of the con-
ditional statement if. In fact, each switch-section is transformed into an
if statement in which the else branch contains all subsequent switch sec-
tions. In a translated program, an innermost else branch will correspond
to a default section.

The try statement elimination is considered as a part of the exception
handling elimination described further.

5.3. Exception handling elimination

In this section, we will detail our translation method for exception han-
dling elimination.
The main steps are the following.
1. The statements goto case and goto default are replaced by the
goto statement.
2. When we eliminate the statement
throw e;
the metainstruction := is used to raise an exception which is the re-
sult of evaluation of e. The exception is stored in the metavariable E.
3. The try block is replaced by its content.
4. The catch blocks are replaced by the if statements with conditional
expressions of the form catch(T, x) or catch(x).

15

For the purpose of elimination, we introduce labeled finally-blocks.
To transform general goto, goto case and goto default into the goto
statements that transfer control to labeled finally blocks (in the sequel,
this process is called normalization), a special algorithm that is described
further has been elaborated. This algorithm uses the rule of normalization
of labels of the switch-statement.

Rule of switch-label normalization (SLN). A fragment of the form
switch-labels statement-list
where statement-list does not start with a labeled statement of the form
identifier: ; produced by this rule, is replaced by
switch-labels L: ; statement-list
where L is a new unique label.

Algorithm of the goto statement normalization. For brevity, let us
consider normalization of the goto case and goto default statements
omitting normalization of the goto statement. Let Lab(B) be the set of
all top-level labels in a block or statement B. Let Ly(B), ..., Lk (B) denote
the elements of the set Lab(B). Let V be the set of all values of the constant
expressions permitted in switch-statements.

1. All switch-statements are enumerated in a textual order.

2. The SLN rule is applied.

3. Let Lab™™ be the set of all labels produced by the SLIN rule at
the stage of normalization of the switch statements, Lab™¥(S) =
{L1(8), -+, Ln(s)(S)} be the set of such labels in a switch-statement
S. Let us define correspondences

CaseL : V x N — Lab and DefL : N — Lab

between the labels of switch-statements and the new labels. For all
labels of the [orm case E: that get to switch-labels of the statement
S;, CaseL(E,i) := L, where L is a label produced by the SLN rule
for a switch-section containing case E:. For all labels of the form
default: that get to switch-labels of the statement S;
DefL(i) := L.

4. New different elements 1i,...,1y, N = |Lab"*?| are added to the
enumeration GT_LABELS. Let the function v : Lab™ — GT_LABELS
defines a one-to-one correspondence between the elements of Lab™*¥
and 1., 1n.

16

5. For all switch-statements S, for all blocks B in S, excluding the
bodies of nested switch-statements, for all finally-blocks in B at
the top level, if a finally-block finally {A} is higher than all other
finally-blocks of S, then it is replaced by
finally(fy) {

A
if (GT.gt == GT_LABELS.v(Li(S))) goto Li(5);
else if (GT.gt == GT_LABELS.v(L2(S5))) goto La(S);

else if (GT.gt == GT_LABELS.v(L,(5)(S5))) goto L,5)(S);
¥
otherwise, it is replaced by
finally(f;+1) {

A

if (GT.gt != GT_LABELS.none) goto f;;
¥
where f; are new diflerent labels, j > 0. The blocks B are enumerated
recursively starting from the body of the statement S.

6. For all switch-statements S;, [or all statements goto case E; in the
statement S;, if goto case E; jumps out of a try-statement with a
finally-block labeled with a label f;, then goto case E; isreplaced
by
GT.gt = GT_LABELS.v(CaseL(E,i));
goto £f;;

Otherwise, goto case E; is replaced by goto CaseL(E, 1);.

7. For all switch-statements S;, for all statements goto default; in
the statement S;, if goto default; jumps out of a try-statement
with a finally-block labeled with a label £;, then goto default;
is replaced by
GT.gt = GT_LABELS.v(DefL(7));
goto f;;

Otherwise, goto default; is replaced by goto DefL(i);.

Note that in the points 5-7, the quantifier application strategy has the
form of a recursive traversal of blocks, moving from the outermost to the
innermost block. However, the statements goto case and goto default
are handled in a textual order starting from the topmost statement.

17

So the above algorithm transforms the statements goto case and goto
default to the ordinal goto. Additionally, in the resulting program the
goto statements do not jump out of the try statements. In this case, the
elimination of try is permitted. The deletion of try is a local transformation
performed by a set of rules that are applied non-deterministically. Let us
consider an example of the mentioned rules.

Rule ETRY1. The fragment of the form
try {A} finally(L) {B}
is replaced by

{4} L:;

if (catch(x))

{
B
MD := upd(MD, Exc, MD(MeM(x)));
goto M;

by

{B}

M:;

where M is a new label.

Rule ETRY2. The fragment of the form
try {A} catch (T; %) {Ci}
catch (T x) {Cz}

catch (T, x) {C,}
catch {Cq}
is replaced by
{4} if (catch(Ty, x)) { Ty eSaved; eSaved = x; C; }
else if (catch(Ty, x)) { To eSaved; eSaved = x; Cp }

else if (catch(T,, x)) { T, eSaved; eSaved = x; C, }
else if (catch(eSaved)) { C, }

The remaining rules are similar to ETRY1, ETRY2 and are described
in [4].

18

5.4. Using directive and namespace elimination

Using directive elimination is performed in two steps. All names are re-
placed by their appropriate qualified names. After that, the using directives
are removed.

Namespace elimination is performed as follows. All qualified names are
replaced with their fully qualified names [1]. In this case, type names are
changed by simple type names that are unique in the global namespace.
Finally, all relerences to objects of these types are directed to the global
namespace.

6. C#-KERNEL AXIOMATIC SEMANTICS

The base formulas of C#-kernel axiomatic semantics are constructs of
the form {P} A {Q} (called Hoare triples), where A is a (possibly empty) se-
quence of statements and metainstructions, P and () are annotations called
a precondition and postcondition, respectively. The truth of a Hoare triple
{P} A{Q} is deflined in the usual way: if execution of the program fragment
A starts in a state in which the precondition P is true and terminates, then
the postcondition @ is true in the final state. Note only that here termina-
tion means either normal termination or termination with throwing out an
exception.

Let us introduce some definitions. The function members [1], standard
library operators and property and indexer accessors will be called [unction
components. Each function component in a program has a unique name
called its identifier.

Access to the structure of a function component M with the identifer
f 1is provided by the functions class, body, SP, pre and post such that
class(f) is the name of the class which contains M, body(f) is the body
of M, SP(f) is the tuple of variables called specification parameters of
M, pre(f) and post(f) are functions such that pre(f)(muvs, SP(f)) and
post(f)(mvs, SP(f)) are formulas of the annotation language called pre-
and postconditions of M, respectively.

We denote the inheritance relation on types by C. Let ST be a predicate
such that the formula SI(C,L,V,T, L2) is true iff the class or struct C' is
initialized in the state defined by metavariables L, V', T and L2. Note that
the metavariables £ and V0 have no influence on type initialization.

19

Let us denote the formula

L(this) ¢ {w,null} A V(this) # wA
T(V(this)) C class(f)A
SI(T(V(this)), L, V,T,L2),

where f is an identifier of a function component, by thiscond(f, mvs). This
formula imposes usual restrictions on this, that hold [or an invocation of
any nonstatic function component with the identifier f. Let thiscond(f, mvs)
be equal to true if f is an identifier of a static function component.

We suppose below that for each function component f the formula

pre(f)(mus, SP(f)) = prec(f,mvs),

where prec(f, mvs) means that
thiscond(f,mvs) AN E = w A SI(class(f),L,V,T,L2)

is true. This formula imposes usual restrictions on this, E and class(f)
which hold before an invocation of f.

6.1. Program

The program rule reduces the proof of correctness of an annotated C#-
kernel program Prg to the proofs of correctness of bodies of its function
members. The proof of correctness of the body of the [unction member M
is performed in the environment Env = (Prg, f,EI,ICS), where f is an
identifier of M, IC'S is a set of initialized classes and struct of the program
Prg. The exception indicator EI takes on the values true, false and w for
cases when an exception has been thrown, no exception has been thrown and
it is not known whether an exception has been thrown or not, respectively.
Below, the superscripts + and — of the environment Env means that EI
sets to true and false, respectively. If there is no index, then suppose that
El =w.

Let us denote the truth of a Hoare triple {P} A {Q} for the program
fragment A in the environment Env by Env - {P} A{Q}.

The environment (Prg, f, EI,ICS) is called conflormed with the triple
{P} A{Q} if the following formulas are true:

e FI =true NP = FE # w,
o EI = false NP = E = w,
e P= SI(C,L,V,T, L2) for each class or struct C € ICS.

20

The components ET and ICS of a conformed environment duplicate in-
formation of the precondition of the Hoare triple. They are used only to
optimize the inference system (to reduce the number of the resulting ver-
ification conditions). Below we consider only conformed environments and
design the inlerence system such that its rules preserve the conlormance
property.

Let f;, where 1 < ¢ < n, be a set of all identifiers of constructors and
methods of the program Prg except for initializing methods SFI and IFI.
We do not verify initializing methods because they appear at the stage of
translation [rom C#-light into C+#-kernel and, therefore, have no specifi-
cations. Let us remind that declarations of properties, indexers and op-
erators are duplicated in method declarations after the translation. De-
note the constructs (Pryg, fi, false,{class(fi)}), pre(f;)(mvs, SP(f;)) and
post{f;)(muvs, SP(f;)) by Env; , P, and Q;, respectively.

The rule for the program Prg with an entry point given by the method
with the identifier f (this method is named Main) has the lorm:

Env; F{Pi}body(fi){Q:} (L<i<n)
{F}

Init{(class(f));
class(f).Main(V0);

{Q}
{P} Prg{Q} ’

The value of the metavariable V0 is an array of application parameters. If
f does not contain parameters, the metavariable V0 is omitted in this rule.
The value w of the second component of the environment of the second
branch of the rule means that the sequence of statements which contains no
function component of the program Prg is executed.

(Prg,w,w,B)

1)

6.2. Elimination of uncertainty in exception indicator

When defining the statement semantics, we consider separately two
cases — an exception has been thrown and no exception has been thrown to
the moment of the statement execution. As stated above, this information is
contained in the exception indicator ET of the environment. The following
rule removes uncertainty (FI = w), when it is not known whether an ex-
ception has been thrown or not to the moment of the statement execution,

21

reducing definition of the statement semantics to these two cases:

Env H{PAE=w}A{Q}
Envt = {PAFE #£w} A{Q} @)
Envt {P} A{Q} '

6.3. Exception propagation

For most statements, execution of a statement in the case when an ex-
ception has been thrown is reduced to that the statement is ignored, and
the exception is propagated to the next statement. To avoid writing simi-
lar rules, the rules of such kind are combined into one scheme of exception
propagation.

Let S be a statement which is not a labelled statement and a state-
ment if with metainstructions catch(7T,x) or catch(z) as the governing
expression. The exception propagation rule has the form:

Envt = {P} A{Q}
Envt = {P}S A{Q}
6.4. The statement if

3)

The rule for the statement if performs case analysis depending on
whether the governing expresssion x is true or false. Remind that in C+#-
kernel the expression x can be only a variable. Therefore the value of this
expression is V{(z):

Env- F{P AV (z) =true}S, A{Q}

Env~ E{PAV(z) = false}Sy A{Q}

Env— F {P}if(z) S else S; A{Q}
6.5. Block

(4)

The algorithm of garbage collection, and, in particular, the moment of
deletion of local variables defined in a block depends on its implementation.
Therefore local variables are not deleted in our semantics after exiting the
block, and the rule [or the block only eliminates braces:

Env™ F{P}S; .. 5, A{Q} (5)
Env— + {P}{S; ... 5,} A{Q} "

Note that no collision of names of local variables appears because all local
variables of C#-kernel programs are unique.

22

6.6. The goto statement and the labelled statement

The rules [or the goto statement and the labelled statement usually use
special annotations called invariants which are attached to labels. In our
approach invariants are not attached to labels but can be placed between any
statements of a program. The only restriction is that any cyclic path in the
program contains at least one invariant. In particular, this approach allows
us to avoid the problem of attaching invariants to new labels which appear
after translation [rom C#-light to C#-kernel. Instead of invariants, the
rules for these two statements use special expressions INV (e, L) called lazy
invariants, where e is a tuple of expressions and L is a label. Lazy invariants
are replaced by real invariants at the stage of refinement of verification
conditions (see Section 7 below).

Let A and B be program fragments and A contains no labelled state-
ments at the top level. Then the rules are as follows:

Env~ F P = INV(mvs, L)
Env— + {P}goto L; A{Q}’

(6)

Env™ H{P}A{INV (muvs,L)}
EnvE {INV(mvs, L)} B{Q}
Env- - {P}A L: B{Q} ’
Envt - {P}A{INV (muvs,L)}
EnvE {INV(mvs, L)} B{Q}
Envt+-{P}A L: B{Q}

6.7. The expression statement

Semantics of an expression statement is defined by four rules.

The rule of invocation for constructors and methods, except for initializ-
ing methods [rom user-defined classes and structs, uses the predicate CALL.
This predicate defines the resulting values of metavariables of mvs by the
name z of the method or constructor, by the expression y referencing to
an object or type, by the argument list [2] and by the set of initial values £
metavariables specified by the precondition P:

Env - {CALL(z,y, [ZLmvsv)\(mvs, P))}A{Q}
Env-+{P}y.x(z); A{Q} '

)

23

To preserve the initial values of metavariables invariable, i. e. as they were
before the invocation, A-expression A(muws, P) is used in CALL instead of
P. Expressions of the form CALL(...) called lazy method invocations are
defined at the refinement stage (see Section 7 below).

Initializing methods SFI and IFI [or user-deflined classes and structs
have their own rules which replace invocations of these methods by their
bodies because these methods appear after the translation and have no

annotations:
Env™ + {P} LocVarRen(S) A{Q}

Env-—+{P}C.SFIQ; A{Q} ~’

Env™ + {P} LocVarThisRen(S) A{Q} (11)
Env- +{P}y.IFI1.CO; A{Q} ’
where S denotes the body of the invoked method, the function LocVarRen
renames local variables of S, the function LocVarThisRen, in addition to
renaming, replace this by y in the body S.

The rule of the delegate invocation uses the predicate DELCALL. Tt
delines the resulting values of metavariables of muvs by the delegate V(z) to
which the variable z refers, the argument list [2] and the set of initial values
of metavariables specified by the precondition P:

Envt{P'} A{Q}
Env- ={P}z(2); A{Q}"’

(10)

(12)

where P’ stands [or
DELCALL(V (z), 2], mvs, A(muvs, P)).

Expressions of the form DELCALL(...) called lazy delegate invocations
are delined at the refinement stage (see Section 7 below).

6.8. Annotations

Annotations placed in certain control points of a program are interpreted
as invariants of these points:

Env-FP=R Env-+{R}A{Q}

Env- - {P}/// <a>R A{Q} ° (13)

Envt-P=R Env"F{R}A{Q}

Env' - {P}//] <a>R A{Q} (14)

24

6.9. The empty statement and empty program

The rules for an empty statement and empty program are defined in the
usual way:

Env™ F{P} A{Q}

Bno- F{P}; A{Q} (15)
Env HFP=Q
Env- F{P} {Q}° (16)
EnvtFP=Q (17)

Envt - {P} {Q}

6.10. Metainstructions of exception catching

Let us remind that the metainstruction catch(¢,z) can appear in a C#-
kernel program only as a governing expression of a statement if. The case
when no exception has been thrown and, therefore, this metainstruction
returns the value false is defined by the rule

Env™ F{P}S; A{Q}
Env= F {P}if(catch(t,z)) S; else So A{Q}

(18)

The case when an exception has been thrown is defined by the rule with
two premises:

Env- - {P'}S; A{Q}
Envt = {PAT(E) €t} S, A{Q}
Envt+ {P}if (catch(t,x)) S1 else Sy A{Q}’

(19)

where the formula P’ has the form
V' IE(P(V + V') (E «+ E"A
V =upd(V',L(z), E")A
E=wAT(E)Ct).

The first premise meets the case when a type of the thrown exception is
derived [rom the type ¢ (T'(E’) C t). In this case, the exception is catched
(E = w) and becomes the value of the variable z (V = upd(V’, L(z), E'")),
and the metainstruction catch returns the value true. The second premise

meets the case when the type of the thrown exception is not derived from
the type t (T(F) ¢ ¢) and the metainstruction returns the value false.

25

The rule for the metainstruction catch(ax) is not a special case of the
above rule for t = object because this metainstruction can catch exceptions
of the types which are not derived from object:

Env- F{P}S; A{Q}
Env— I {P}if(catch(z)) S; else S2 A{Q}’

Env~ - {P"}S; A{Q}
Envt F {P}if (catch(z)) S| else S; A{Q}’

(20)

(21)

where P denotes
V' 3E (
PV« V") E + EA
V=upd(V',L(z),E')NE =w) .
6.11. The assignment metainstruction

The metainstruction z := ¢ in the case of z # F is defined by the rule:

Env~ F {32 Pz a2 YAz =e(z+ 2")} A{Q} ‘

Env- H{P}z:=e; A{Q} (22)

The assignment E := e has a separate rule because it can change the
environment (the value of exception indicator ET):

Env- F{PAre=w}A{Q}
Envt - {P'} A{Q}
Env- F{P}E :=e; A{Q} ~’

where P’ denotes the formula
JE' P(E+ E'YANE=¢(E+ EYANE#w.

6.12. The metainstructions of static initialization and storage
allocation

Let us denote by newp(d, L, V, L2) the formula
Vavy(d & {L(z),V(z), L2(z,y)})
defining a new location d.

26

In the case when information about initialization of a class or struct C' is
contained in the environment, i. e. C € IC'S, the rule for the metainstruction
Init (C) has the form:

Env™ F{P} A{Q}
Env~ F {P} Init(C); A{Q} ~

(24)

If C ¢ ICS, the case analysis is performed. The [irst premise meets
the case when the type C has been initialized and information about this
fact is contained in the precondition P. The second premise meets the case
of initialization of the type C' which includes initialization of static fields
C.SFI(Q) and execution of the static constructor C'.C ():

upd(Env~, ICS, ICSU{C}) F
{PASI(C,L,V,T,L2)} A{Q}

upd(Env~ , ICS, ICSU{C}) -
{P'}C.SFI0O; C.CO; A{Q}
Env~ F {P} Init(C); A{Q}

Here P’ stands for
3L’ 2V 3d 3e (
newp(d, L', V', L2)A
newp(e, L', V', L2}A
P(L + L')(V « V')A
L =upd(L',C,d)A
V =upd(V',d, e}
-SI(C, L', V', T, L2)).

We treat the static part of a type (a class or struct) as an object in memory,
which is accessible through the name of this type. The element d denotes
storage location to which the name C refers and where the reference to the
static part e of the type C is stored.

Note that rule (24) is auxiliary because, for a conformed environment,
the information that the class C' has been initialized is also contained in
the precondition P. This rule optimizes the inference system and reduces
the number of verification conditions by eliminating the case analysis which
takes place in rule (25).

The metainstruction of storage allocation new_instance(z) is defined

27

by the rule:

VO 3d (

newp(d, L, V, L2)A

P(V0 « VO')A A
V0 =d)

Env~ F {P}new_instance(); A{Q}

Env™ F

(26)
The new location d is allocated and becomes the value of the variable V0.

7. VERIFICATION CONDITION REFINEMENT

Verification condition refinement is based on the algorithm which re-
places lazy invariants of labelled statements by real invariants, as well as on
axiomatization of the functions CALL and DELCALL.

7.1. Lazy invariant refinement

Let X be a set of formulas. We denote the set of all formulas occuring
in X of the form
A = INV(muvs, L)

by X1 and the set
{A|A=INV(mvs,L) € X1}

by I.(X).

The following algorithm refines lazy invariants INV(...) in the set @ of
the generated lazy verification conditions:

While there exists a label L such that the set @, is not empty, replace ®
by ®', where ®’ is the result of replacement of all occurences of expressions of
tl)le form INV (€, L) in the formulas of the set (& \ &) by \/ 41, (&) A(mus
€).

For each path of program execution that leads to the program point that
precedes the statement labelled by L there is a precondition accumulated
in this point. The lazy invariant INV (muvs, L) is replaced by disjunction of
all such preconditions.

To illustrate the idea of lazy invariant refinement, consider the following
example. Let A be a C#-light program fragment of the form

28

L: if (x<0) {

/// <a> x<0

x = x+1;

goto L;}
The annotation x < 0 is an invariant which breaks a cyclic path into linear
parts. For simplicity we do not rewrite this program in terms of metavari-
ables and use the usual Hoare rules for the statement if and the assignment.
Let us prove the Hoare triple

{z <0} A{z =0}

The set @ of the generated lazy veriflicalion conditions consists of the fol-
lowing formulas:

z<0=INV(z, L), (1)
INV(z,L) ANz < 0=z <0, (2)
INV(z,L)A+(z<0)=z=0, (3)
¥ <0Azx=a'+1=INV(z,L). (4)

The set @, includes formulas (1) and (4). Then ® is replaced by
which consists of the formulas

(x <0V <0Az=2"+1)Ax< 0=z <0, (2"
(z<OvVae <O0Az=2"+1)A-(z<0)=2=0 (3)

obtained as the result of the replacement of INV(z, L) by
r<0vz <0Az=2"+1

in formulas (2) and (3), respectively.
The proof of these [ormulas is straightforward.

7.2. Lazy invocation refinement

Unlike lazy invariants, lazy invocations are not eliminated at the refine-
ment stage. Instead of that, axioms are defined for the functions CALL and
DELCALL. They allow us to prove verification conditions involving these
functions.

29

The function CALL is defined by the axiom

CALL{(z,y, z,u, \(mvs, P)) <
Jov A f Fw Fa(P(mvs « v)A

invoker(f,z,y, z,v)A
subst(w, v, f,x, 2)A

pre(f)(w,a) Apost(f)(u, a)).

The tuple a defines specification parameters of the invoked function member
with the identifier f. The tuple v contains the value which the metavari-
ables have belore invocation of this function member. The logical function
subst defines whether the tuple w of metavariables is the result of argument
substitution in the function member. The logical function invoker defines
whether f is an identifier of the function member. In turn, these functions
are axiomatized in accordance with the specification [1].

The value of a delegate is a list of pairs of the form [a, b] where a is the
name of an invoked [unction member, b is the object or type on which the
function member is invoked. The delegate invocation is reduced to sequen-
tial invocations of function members which belong to this list. Therefore the
axioms for the function DELCALL are inductive definitions, where induc-
tion is performed on the first argument of the function DELCALL which
is the delegate value.

DELCALL(rcons([z1, yl], z), z,u, A(mwvs, P)) &
CALL(z1,yl, z,u,
Mmuvs, DELCALL(z, z,u, \(mvs, P)))).
The induction base is defined by the axiom

DELCALL([], z,u, A(mus, P)) < P.

We use the usual list operations: first (returns the first element of a list),
last (returns the last element of a list), tail (returns a list except for the
first element), head (returns a list except for the last element), cons (adds
an element as the first element of a list) and rcons (adds an element as the
last element of a list).

8. ILLUSTRATIVE EXAMPLE

As an example we adopted one of the programs [7, Fig. 9] known as
verification challenges. The program addresses the issues of overriding and

30

dynamic types. Originally written in Java, it is presented as the following
C#-light program:
class C {
virtual void m() { m(Q); }
}

class D : C {
override void m()
{

throw new System.Exception();

}

void test() { base.m(); }

At the first sight the method test () seems to loop forever. But the late
binding prevents this. The method test () calls the method m() from the
class C, which calls the method m() from the class D, since ‘this’ has the
runtime-type D.

It should be noted that the syntax of Java has not the keywords virtual
and override. Thus, Java programs require careful reading to recognize the
virtualization of methods. At the same time Java allows us to express the
exceptions raised by methods.

8.1. Program annotations

Let us introduce some uselul functions over tuples. The term z[¢] will
stand for the i-th element of x, subtuple(z,1,j) will denote the slice z[i..5],
and len(z) returns the length of z.

Let a denote the tuple of specification parameters for C.m. We assume
that the element a[l] (denoted as TOT'(a)) stores the type of this, and
the tuple subtuple(a,2,7) (denoted as muvsg(a)) stores the initial values of
metavariables [rom mwvs. The resting parameters (i.e. subtuple(a, 8,len(a)))
are denoted as rest(a). For brevity, we use the name SE instead of
System_Exception.

31

Now we can describe the specifications for program methods:

pre(D.m)(mus,[]) : prec(D.m, mvs)

post(D.m)(mus,[]) : T(E) = SE

pre(D.Test)(mus,[]) : prec(D.Test,mvs) A T(V (this)) = D
post(D.Test)(mus,[]) : T(E) = SE

pre(C.m)(mus, a) :
prec(Can, mus)A
T(V(this)) = TOT(a) A mus = mvse(a)A
(TOT(a) #£ C =
Y f VYmus' ((invoker(f, m,this,[], mvs)A
subst(mvs’, mus, f,this,[]) =

pre(f)(mus’, rest(a))))A
(TOT(a) = C = true)

post(C.m)(muvs, a) :
(TOT(a) # C =
Y f (invoker(f, m, this, [], mvsg(a)) =
post(f)(mus, rest(a))))A
(TOT(a) =C = false)

The postcondition of the method D.Test states that the metavariable E
stores the uncaught exception of type SE raised by the method D.m. The
specification of the virtual method C.m describes the case analysis. If the
type of this is C, then the invocation m() ; is the recursive invocation of C.m
itself, which leads to the endless loop (TOT(a) = C = false). Or else, the
invocation m() ; is the invocation of a proper implementation of C.m from
some derived class. The collection of all those implementations is quantified
by the variable f, which satisfies the predicate invoker. This predicate is a
logical representation of the late binding algorithm. The result of invocation
satisfies the postcondition of actual f.

32

8.2. Translation from C+#-light into C#-kernel

The result of translation is the following C#t-kernel program:
class C {
public static void SFI() {3}
public void IFI_C() {
Init(object);
this.IFI_object();
}

virtual void m() { this.m(Q); }

class D : C {
public static void SFI() {}
public void IFI_D() {
Init(C);
this.IFI_CQ);
}

override void m() {
Init(System_Exception);
new_instance();

L := upd(L, x, VO);
T := upd(T, x, System_Exception);
T := upd(T, L(x), Loc(System_Exception));

new_instance();

:= upd(V, L(x), VO);

:= upd(T, V(x), System_Exception);
.IFI_System_Exception();
.System_Exception();

= V(x);

MH M A<

}

void test() { base.m(); }
}

It should be noted that our axiomatic semantics allows us to optimize
the resulting C#-kernel program. As we have seen, the proofs for method
bodies are carried out under assumptions that the corresponding classes are

33

already initialized. Thus, we only use the explicit Init metainstructions in
those contexts, where they cannot be omitted.

The example also illustrates the inconvenience of our approach for man-
ual verification. The program grows in size. For example, a single string in
the body of D.m turned into a dozen of strings. On the other hand, the
process of verification condition generation can be fully automated, so the
user is not forced to inspect this intermediate code at all. And the main
argument is that it is considerably simpler to justify small and clear proof
rules for metainstructions than one huge and confusing rule for the original
operator new.

Note that the method SFI is empty for every class because the types C
and D do not contain static fields. The implicit usage of the reference this
in IFI-methods and in C.m also deserves attention.

According to translation rules, the namespace System is eliminated and
every occurrence of the qualified name System.Exception is replaced by
the global level name System Exception.

8.3. Verification condition generation

Let us consider, for example, VC generation for the method Test. Ac-
cording to rule (1), we have to prove the triple

{Py} base.n); {T'(E) = SE},
with Py equal to
prec(D.Test,mvs) AT(V(this)) = D,

in the environment Env~ = (Prg, D.Test, true,{D}).
Rule (9), applied to the invocation base.m(), transforms the precondi-
tion P, into precondition P; of the form

CALL(m,base,[], mus, \(mus, P))

and replaces the environment Env with Env~.
By applying rules (2), (16) and (17) to the empty program with the
precondition P, we obtain two verification conditions:

VC; @ EnvTFPiANE#w=T(E)=S5E,
VCy ¢+ Env FPAE=w=T(E)=SE.

34

8.4. Refinement and proof of verification conditions

After elementary logical simplifications, the condition V'Cy is rewritten

as
(CALL(m,base,| |,mus,

A(mws, prec(D.Test, mvs)A
T(V(this)) = D))A (27)
E#w)=
T(E) = SE
By CALL’s definition, the term CALL(...) in (27) transforms into

dmus; 3 f Amusy Ja
(Th(Vi(this)) = D A pree(D.Test, mvsy)A
E1 = wA
SI(D,L,V1,T1,L21)A (28)
invoker(f, m,base, [],mvs1)A
subst(muss, musy, f, base,[])A
pre(f)(muss, a) A post(f)(mus, a))

By invoker’s definition, we have f = C.m in Env™t. Then the precondi-
tion pre(f)(muss,a) transforms into

T5(Va(this)) = TOT (a)A

muss = musg(a)A

(T'OT(a) #C =

Vg Vmus'
((invoker(g, m, this, [], mvs2)A
subst(mus', mvsa, g, this, [])) =

pre(g)(mus’, rest(a)))A

(T'OT(a) = C = true)

(29)

According to the deflinition of subst, the formula
subst(muvsa, musy, f,base, [])

can be rewritten as

dd

(newp(dv Lla Vvla L21>/\
Ly = upd(L,this,d)A (30)
Vo = upd(Vy,d, V1 (this))A
Ty = upd(upd(Ty, this, C),d, Loc(C))).

35

The condition T1(Vi(this)) = D implies T2(Vs(this)) # C. Then (29)
turns into
TOT(a) = D Amusy = muso(a)A
Vg Vmus'
((invoker(g, m, this, [], mvss)A (31)
subst(mus',musy, g, this, [])) =
pre(g)(mus’, rest(a)))

By invoker’s definition, we have g = D.m in Env*. Then (31) trans-
forms into

TOT(a) = D A mvsy = musg(a)A
Vmus' (subst(mvs’, mvsy, D.m, this,[]) =
prec(D.m,muvs")).

Analogously, the poscondition post(f)(mus,a) is rewritten as
V& (invoker(h, m, this, [], mvsa) = post(h)(muvs, [])) . (32)

By invoker’s definition, we have h = D.m in Envt. Consequently, post-
condition (32) turns into T(E) = SE. Then (28) becomes

dmuvs; dmusy da
(Th(Vi(this)) = D A prec(D.Test, mvsy)A
prec(C.m, muvsy) ATOT (a) = DA
Vmus' (subst(mvs’, muvsy, D.m, this,[]) =
prec(D.m, mvs’))A
musy = musg(a) AT(E) = SE) .

This implies T'(F) = SE and, consequently, the verification condition
VCy is true. The truth of V' is established by analogy.

9. CONCLUSION

In this paper, we present the three-level approach to the sequential
object-oriented program verification that extends our two-level approach to
C program verification [11, 12, 13]. The three-level approach is applied to
the language C#-light that includes all principal sequential C# constructs.

The advantages of the approach are as follows:

¢ essential simplification of the Hoare-like logic by means of translation
of some semantically difficult C+#-light constructs into C#-kernel,
and postponement of handling some dynamic constructs until the
refinement stage;

36

e unambiguous inference of lazy verification conditions in the Hoare-
like logic by means of forward proof rules that simplifies automatic
generation of verification conditions;

e the number of generated verification conditions can be considerably
reduced using the environment information obtained by applying for-
ward inference rules.

The nontrivial example presented in Section 8 illustrates these advan-
tages of our approach.

It is suggested to work out theoretical justification of this approach in-
cluding proving soundness of the axiomatic semantics with respect to oper-
ational semantics, as well as correctness of translation from C#-light into
C+#£-kernel.

The three-level approach is promising for applications. We are developing
an experimental tool for C#t-light program verification including C#-light
to C+#t-kernel translator, lazy verification condition generator for C#-kernel
programs and lazy verification condition refiner. It is suggested to implement
a static analyzer of C#-light programs and a visualization environment.

However, verification of large C#-light programs is still a challenge. The
combination of our approach with the modular approach [10] and extended
static checking method [9] can be promising for this difficult problem.

REFERENCES

1. C# Language Specification. Standard ECMA-334. (2001) Web pages at
http://wuw.ecma-international.org/.

2. Apt K.R., Olderog E.R. Verification of Sequential and Concurrent Programs. —
Berlin a.o.: Springer-Verlag, 1991. — 450 p.

3. Borger E., Fruja N.G., Gervasi V., Stark R. A High-Level Modular Definition of
Semantics of C# // Theor. Comput. Sci. — 2004. — N 336(2/3).

4. Dubranovsky I1.V. C# program verification: translation from C#-light into C#-
kernel. — Novosibirsk, 2004. — (Prepr. / IIS SB RAS; N 120) (in Russian).

5. Huisman M., Jacobs B. Java Program Verification via a Hoare Logic with Abrupt
Termination // Proc. FASE 2000. — Lect. Notes Comput. Sci. — 2000. — Vol. 1783.
— P. 284-303.

6. Huisman M., Jacobs B. Inheritance in Higher Order Logic: Modeling and Reasoning
// Proc. TPHOLs 2000. — Lect. Notes Comput. Sci. — 2000. — Vol. 1869. — P.
301-319.

7. Jacobs B., Kiniry J.L., Warnier M. Java Program Verification Challenges // Proc.
FMCO 2002. — Lect. Notes Comput. Sci. — 2003. — Vol. 2852. — P. 202-219.

8. Jacobs B., Poll E. Java Program Verification at Nijmegen: Development and Per-
spective // Lect. Notes Comput. Sci. — 2004. — Vol. 3233. — P. 134-153.

9. Leino K.R.M. Extended Static Checking: a Ten-Year Perspective // Lect. Notes
Comput. Sci. — 2001. — Vol. 2000. — P. 157-175.

37

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Miiller P. Modular Specification and Verification of Object-Oriented Programs //
Lect. Notes Comput. Sci. — 2002. — Vol. 2262.

Nepomniaschy V.A., Anureev 1.S., Promsky A.V. Verification-Oriented Language
C-light and its Structural Operational Semantics // Proc. PSI 2003. — Lect. Notes
Comput. Sci. — 2003. — Vol. 2890. — P. 103-111.

Nepomniaschy V.A., Anureev 1.S., Michailov I.N, Promsky A.V. Towards C program
verification. The C-light language and its formal semantics // Programmirovanie. —
2002. — N 6. — P. 19-30 (in Russian).

Nepomniaschy V.A., Anureev 1.S., Promsky A.V. Towards C program verification.
Axiomatic semantics of the C-kernel language // Programminrovanie. — 2003. — N
6. — P. 65-80 (in Russian).

Nepomniaschy V.A., Anureev 1.S., Dubranovsky 1.V., Promsky A.V. A three-level
approach to C#-light program verification // Joint NCC & IIS Bull. Ser.: Comp.Sci.
— 2004. — Is. 20. — P. 61-85.

Oheimb D.v. Hoare Logic for Java in Isabelle/HOL // Concurrency and Computa-
tion: Practice and Experience. — 2001. — Vol. 13.

Oheimb D.v., Nipkow T. Hoare Logic for NanoJava: Auxiliary Variables, Side Effects,
and Virtual Methods Revisited // Proc. FME 2002. — Lect. Notes Comput. Sci. —
2002. — Vol. 2391. — P. 89-105.

Pierik C., de Boer F.S. A Syntax-Directed Hoare Logic for Object-Oriented Pro-
gramming Concepts // Lect. Notes Comput. Sci. — 2003. — Vol. 2884. — P. 64-78.
Poetzsch-Heffter A., Muller P. A Programming Logic for Sequential Java // Proc.
ESOP’99. — Lect. Notes Comput. Sci. — 1999. — Vol. 1576. — P. 162—176.

Reus B., Wirsing M., Hennicker R. A Hoare Calculus for Verifying Java Realizations
of OCL-constrained Design Models // Proc. FASE 2001. — Lect. Notes Comput.
Sci. — 2001. — Vol. 2029. — P. 300-317.

38

B.A. Henomusmwmii, 1.C. Anypees,
N.B. dy6pauosckuii, A.B. IIpomckuii

HA IIYVTU K BEPUOPUKAIINUN C#-ITIPOT'PAMM:
TPEXYPOBHEBDBIU IIOJXO0O

ITpenpunr
128

Pyxonucy mocrymuia B pemaxmuo 21.11.2005

Peuenzear @. A. Mypsuna
Penakrop A. A. enyxuna

Ilommucano B mevars 28.11.2005

®opmar 6ymarn 60x84 1/16 Ob6bem 2,3 yu.-uzn.a., 2,4 ..
Tupax 60 sK3.

3AO PULT “Tlpaiic-kypoep” 630090, r. Hosocubupck, up. Akasx. Jlaspenrnesa, 6,
e (383) 330 72 02

